Oxidised LDL internalisation by the LOX-1 scavenger receptor is dependent on a novel cytoplasmic motif and is regulated by dynamin-2.

نویسندگان

  • Jane E Murphy
  • Ravinder S Vohra
  • Sarah Dunn
  • Zoe G Holloway
  • Anthony P Monaco
  • Shervanthi Homer-Vanniasinkam
  • John H Walker
  • Sreenivasan Ponnambalam
چکیده

The LOX-1 scavenger receptor recognises pro-atherogenic oxidised low-density lipoprotein (OxLDL) particles and is implicated in atherosclerotic plaque formation, but this mechanism is not well understood. Here we show evidence for a novel clathrin-independent and cytosolic-signal-dependent pathway that regulates LOX-1-mediated OxLDL internalisation. Cell surface labelling in the absence or presence of OxLDL ligand showed that LOX-1 is constitutively internalised from the plasma membrane and its half-life is not altered upon ligand binding and trafficking. We show that LOX-1-mediated OxLDL uptake is disrupted by overexpression of dominant-negative dynamin-2 but unaffected by CHC17 or mu2 (AP2) depletion. Site-directed mutagenesis revealed a conserved and novel cytoplasmic tripeptide motif (DDL) that regulates LOX-1-mediated endocytosis of OxLDL. Taken together, these findings indicate that LOX-1 is internalised by a clathrin-independent and dynamin-2-dependent pathway and is thus likely to mediate OxLDL trafficking in vascular tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Analysis and Molecular Dynamics Simulation of LOX-1 K167N Polymorphism Reveal Alteration of Receptor Activity

The human lectin-like oxidized low density lipoprotein receptor 1 LOX-1, encoded by the ORL1 gene, is the major scavenger receptor for oxidized low density lipoprotein in endothelial cells. Here we report on the functional effects of a coding SNP, c.501G>C, which produces a single amino acid change (K>N at codon 167). Our study was aimed at elucidating whether the c.501G>C polymorphism changes ...

متن کامل

Ligand specificity of LOX-1, a novel endothelial receptor for oxidized low density lipoprotein.

Endothelial dysfunction, or activation, elicited by oxidized low density lipoprotein (Ox-LDL) and its lipid constituents has been shown to play a key role in the pathogenesis of atherosclerosis. We recently have identified a novel receptor for Ox-LDL-designated lectin-like Ox-LDL receptor (LOX-1) in vascular endothelial cells. To examine ligand specificity of LOX-1, we established CHO cell line...

متن کامل

LOX-1 protein, A Biomarker in the Prognosis of Atherosclerosis

LOX-1 is a class E scavenger receptor that mediates the uptake of oxLDL by vascular cells. LOX-1 is involved in endothelial dysfunctions, monocyte adhesion, the proliferation, migration, and apoptosis of smooth muscle cells, foam cell formation, platelet activation, as well as plaque instability; all of these events are critical in the pathogenesis of atherosclerosis. These LOX-1-dependent bio...

متن کامل

LOX-1 boosts immunity

Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is a class E scavenger receptor that is encoded by the OLR1 gene on human chromosome 12. LOX-1 is expressed as a type II transmembrane protein containing four domains: an extracellular C-terminal lectin domain, a connecting neck domain, a single transcellular domain and a short N-terminal cytoplasmic tail. A disulfide bond be...

متن کامل

Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein.

BACKGROUND Oxidatively modified LDL (oxLDL) plays an important role in the development of atherosclerosis. OxLDL effects, eg, foam cell formation, are mediated in part by the classic scavenger receptor, whereas other effects may involve the recently cloned endothelial oxLDL receptor, LOX-1 (lectinlike oxLDL receptor-1), which is distinct from macrophage scavenger receptors. Because the regulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 121 Pt 13  شماره 

صفحات  -

تاریخ انتشار 2008